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Motivation — Challenges
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Motivation — Existing solutions

Memory-resident solution

Running on single server.

A Difficult/Impossible to accommodate the content of an
extremely large graph.

A Low concurrency.

Simple distributed solution (e.g., MapReduce)
Running on commodity cluster.
High concurrency and enough memory space.

A Chained MapReduce
A Communication and serialization overhead.
A Programming complexity
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Pregel (GraphLab, GPS, etc)

Cluster Graph

Distribution model: graph partitioning.
Computation model: run on each partition/vertex

simultaneously.
Communication model: message passing
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Pregel: Pros and Cons

Pros

Designed for iterative jobs
Graph algorithms: shortest distance, PageRank, etc.

DM/ML tasks: KMeans, belief propagation, Parallel Gibbs
sampling, etc.

Scalable, robust, simple.
cons
Graph partitioning:one partition can not fit all !
Query on graph
Unbalanced workload
Inter-machine communication
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Graph query

A Graph query pattern
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(a) random/complete  (b) internal (c) cross-partition

A Unbalanced workload A Inter-machine communication

\

5/25/2012 UCSB 6

“~ -
\




Objectives

Graph query processing

Solving the problems facing graph partitioning (Pregel)

Workload balancing (replication)

Communication reduction

Graph partition management strategy

Evolving query workload.

Sedge: a Self Evolving Distributed Graph Processing

Environment
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Partitioning technigues
Complementary partitioning
On demand partitioning

Two-level partition management
System architecture
Experiments
Conclusions
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Complementary partitioning

(a) Partition set S, (D) Sz - Complementary
partition set of 54

Complementary partitioning : repartition the graph with
region constraint.
These two sets of partitions will run independently.
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Complementary partitioning

lteratively repartition the graph

Pros

Effective communication reduction
Workload balancing

cons

Space limitation

Can not adapt to dynamic workload
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On demand partitioning

[ /I ®
Blocks Nt et
Goal coarsen a graph ® .‘:,.
Method: disjoint thop 27N A o
region * ,\\

Query profiling
Blocking: use blocks to track
crosspartition queries.
Advantages:
Query generalization.
Profiling with fewer features.
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On demand partitioning

2 P2 p3
lewVS
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Envelope a set of blocks that covers a cross partition

query.
Envelope Collectiort put the maximized number of
envelopes into a new partitiowrt. space constraint.
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Intention: combine similar envelopes sharing many
common blocks.

Algorithm:

1) Similarity search(nearest neighbor search).
Locality Sensitive Hashing (LSH): #axsh in O(n)

2) Envelope combining

Cluster the envelopes in the same bucket produced by
Min-Hash.

Combine the clusters with highest benefit.
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